The exit-time problem for a Markov jump process
نویسندگان
چکیده
منابع مشابه
Computing the exit-time for a finite-range symmetric jump process
Abstract. This paper investigates the exit-time for a broad class of symmetric finite-range jump processes via the corresponding master equation, a nonlocal diffusion equation suitably constrained. In direct analogy to the classical diffusion equation with a homogeneous Dirichlet boundary condition, the nonlocal diffusion equation is augmented with a homogeneous volume constraint. The volume-co...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولOn the Filtering Problem for Continuous-Time Markov Jump Linear Systems with no Observation of the Markov Chain
We consider in this paper the optimal stationary dynamic linear filtering problem for continuous-time linear systems subject to Markovian jumps in the parameters (LSMJP) and additive noise (Wiener process). It is assumed that only an output of the system is available and therefore the values of the jump parameter are not accessible. It is a well known fact that in this setting the optimal nonli...
متن کاملWhen the \bull" Meets the \bear"|a Rst Passage Time Problem for a Hidden Markov Process
Let t be a continuous Markov chain on N states. Consider adjoining a Brownian motion with this Markov chain so that the drift and the variance take diierent values when t is in diierent states. This new process Z t is a hidden Markov process. We study the probability distribution of the rst passage time for Z t. Our result, when applied to the stock market, provides an explicit mathematical int...
متن کاملA Pure Jump Markov Process with a Random Singularity Spectrum
We construct a non-decreasing pure jump Markov process, whose jump measure heavily depends on the values taken by the process. We determine the singularity spectrum of this process, which turns out to be random and to depend locally on the values taken by the process. The result relies on fine properties of the distribution of Poisson point processes and on ubiquity theorems.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The European Physical Journal Special Topics
سال: 2014
ISSN: 1951-6355,1951-6401
DOI: 10.1140/epjst/e2014-02331-7